
 1

Best Practice Guide

AAS Security Specifications & Beyond

 August 18th, 2025 2

 IMPRINT

Publisher
Open Industry 4.0 Alliance
Christoph Merian-Ring 12, 4153 Reinach, Switzerland
https://openindustry4.com
info@openindustry4.com

Status
File: AAS Security Specifications & Beyond
August 18th, 2025 – Version 1

Editors
Lucas Wolf (Open Industry 4.0 Alliance)

Autors

Alain Tenkeu (Murrelektronik GmbH)
Christina Borntraeger (Meta-Level Software AG)
Johanna Kiess (DXC Technology Deutschland GmbH)
Markus Rentschler (ARENA2036 e.V.)
Michael Hofmann (cdmm GmbH)
Philip Sehr (TH-OWL)
Vitas Kling (AMETEK GmbH)

mailto:info@openindustry4.com

 August 18th, 2025 3

Abstract

This document describes a standardized approach to secure access to the Asset
Administration Shell (AAS) in accordance with IEC 63278. The AAS is a machine-readable
representation of a product that enables the exchange of structured product-related
information across systems and organizational boundaries. As AAS usage expands into
environments with many participants, a consistent security concept is required to ensure
interoperability, data integrity, and controlled access.

The paper focuses on the mechanisms defined in IDTA-01004 for implementing
confidentiality and integrity protection without modifying the AAS itself. Access policies
are stored externally in dedicated repositories and applied through a technology-neutral
rule model. Attribute-Based Access Control (ABAC) provides the basis for context-
dependent decisions, complemented by support for federated and organization-specific
identity providers.

The content is structured around four main aspects: reference scenarios that define the
application context; the concepts of access levels and access rules; authentication and
identity provisioning based on established protocols; and infrastructure options for cross-
company identity management. Implementation considerations, open challenges, and
recommendations for adoption are also discussed.

The target audience includes system architects, product developers, and service providers
involved in AAS-based data exchange. This document aims to provide both the conceptual
framework and practical guidance needed to deploy secure AAS infrastructures in
industrial environments.

 August 18th, 2025 4

Content

Introduction ... 6

1 Reference Scenarios: Defining the Context for Access Management 8

1.1 B2B Use Case... 8

1.2 B2C Use Case .. 9

2 Access Control Concepts for the AAS .. 10

2.1 Type AAS & Instance AAS ... 10

2.1.1 Type AAS .. 10

2.1.2 Instance AAS ... 10

2.1.3 Public Type and Product Information .. 11

2.2 Access Levels ... 11

2.2.1 Asset Level .. 12

2.2.2 Submodel Level ... 12

2.2.3 Attribute Level ... 12

2.3 Attribute-Based Access Control ... 13

2.4 AAS Access Rule Model .. 13

3 Authentication .. 15

3.1 Claims, Scopes & Roles ... 17

3.1.1 Claims .. 17

3.1.2 Scopes ... 17

3.1.3 Roles .. 18

4 Identity Provider (IdP) ... 20

4.1 No Authentication/Authorization ... 20

4.2 Internal Authentication/Authorization ... 20

4.3 External and Internal Identity Providers ... 20

4.4 Gateway ... 21

5 Conclusion ... 23

 August 18th, 2025 5

6 Open Challenges ... 24

7 Outlook .. 25

 August 18th, 2025 6

Introduction

The Asset Administration Shell (AAS) is a standardized and machine-readable virtual
representation of a physical or digital asset in accordance with IEC 63278. It is used for the
interoperability of Industry 4.0 products and systems. With the AAS, all asset-related
information, such as the digital nameplate, manuals, certificates or technical data, can be
stored, updated and exchanged across stakeholder boundaries throughout the entire
product life cycle.

Security considerations in the context of AAS have become increasingly central to their
deployment, especially within data spaces consisting of thousands of participants.
Consistent implementation across systems, organizations, and technologies requires a
uniform security concept. Without it, access decisions remain fragmented, leading to
interoperability issues and reduced trust in exchanged data. To address this, access control
must follow a standardized approach based on well-established security principles which
define how sensitive information is protected and how the integrity of data is maintained.
The main goals of this approach are the protection of confidentiality and the assurance of
integrity in the handling of AAS content.

Confidentiality protection means that only authorized parties shall be able to access
sensitive information managed by the AAS. This applies both to actual values (properties)
and to the structure and metadata represented by the AAS, including the topology
described by Submodels, SubmodelElements. Integrity protection requires that only
authorized parties shall be able to enter or modify data in an AAS. Mechanisms should
enable the detection of unintentional changes and allow the originator of the data to be
clearly traced.

To enable confidentiality and integrity protection, IDTA-01004 defines a concept in which
user access restrictions can be configured without modifying the AAS itself. Access policies
are stored externally in dedicated policy repositories, separate from the AAS instances to
which they apply. This separation ensures that data structures remain unchanged while
access logic can be maintained and updated independently. The concept relies on a
technology-neutral model expressed in Backus-Naur Form (BNF), together with a
corresponding JSON schema. These elements are used for both access rule definitions and
the query language in HTTP API version 3.1. The approach supports attribute-based access
control (ABAC) and is compatible with both federated and organization-specific identity
providers. Access decisions are evaluated through data filtering before information is
returned to the requester. While this mechanism primarily targets AAS Type 2
implementations, it can also be applied during the creation of AAS Type 1 files. The chapters
that follow describe how these elements are applied in practice. Section 1 defines the
application scenario context. Section 2 introduces the basic concepts of access levels and
the structure of access rules. Section 3 focuses on authentication, token formats, and

https://industrialdigitaltwin.io/aas-specifications/IDTA-01004/v3.0/index.html

 August 18th, 2025 7

identity provisioning based on established protocols. Section 4 discusses scenarios for
cross-company identity handling, including API gateway integration.

In summary, the following topics are addressed in this paper:

1) The access levels and rules related to a certain successful authentication (see
chapter Access Control Concepts for the AAS).

2) The authentication and authorization of users or systems. This raises the question
of who can authenticate themselves and how, and what additional information
needs to be provided for authentication (see chapter Authentication).

3) The infrastructure used. This involves how authentication is regulated (centralized
or decentralized) and which combinations are possible (see chapter Identity
Provider (IdP)).

 August 18th, 2025 8

1 Reference Scenarios: Defining the Context for Access
Management

To define the scope and direction of this paper, we also describe the following
representative B2B & B2C scenarios that serve as a reference for the security requirements
addressed in the following chapters.

1.1 B2B Use Case

A customer orders a product directly
from the manufacturer, for example
via an online shop. During this
process, all relevant customer data is
collected, including name, address,
product configuration, and, where
applicable, individual customization
requests. Once the order is
completed, production begins. In
parallel to manufacturing, a digital

twin of the product is created. The digital twin is a structured digital representation of the
physical product and includes information such as material composition, CO₂ footprint,
maintenance instructions, and additional technical details.

When the product is shipped, the digital twin is published on an AAS platform. This process
follows the requirements of the digital product passport (DPP), which is mandated as part
of European sustainability initiatives. The DPP requires certain product data to be made
publicly available to ensure transparency along the supply chain and to support circular
economic goals.

Since not all information is intended for public access, a differentiated access control
concept is applied. Public data such as the digital nameplate, environmental information,
or instructions for disposal and recycling is accessible to everyone. In contrast, customer-
specific or sensitive data, including maintenance history or individual configurations, is
restricted to authorized users.

Access rights are managed through a central authorization system. This ensures that each
user group can only view the information relevant to their role. The scenario described here
forms the starting point for the following technical sections.

 August 18th, 2025 9

1.2 B2C Use Case

In a B2C context, the use of an AAS
infrastructure creates new possibilities
for structured interaction between end
users and manufacturers. One example
is product registration, which can serve
as the basis for a feedback channel from
the customer to the supplier.
Traditionally, this form of interaction is
difficult to establish due to the lack of
standardized product identifiers,

inconsistent data availability after the point of sale, and disconnected communication
channels.

Through registration, the end user links themselves to a specific AAS instance of the
product. This allows the supplier to provide usage-specific updates, maintenance
information, or technical notices via the AAS. At the same time, users can submit feedback
or error reports in a structured format that aligns with the AAS model. This enables
consistent data exchange tied directly to the product configuration and lifecycle.

To ensure secure operation, appropriate access control mechanisms are required. While
general information may remain publicly accessible, any exchange of usage data or
personal information must be limited to authorized participants. This scenario illustrates
how AAS infrastructures can enable data-driven services even in decentralized consumer
environments.

 August 18th, 2025 10

2 Access Control Concepts for the AAS

Access control in the Asset Administration Shell is structured through a combination of
layered access levels, attribute-based decision-making, and a formalized rule model. The
concept of access levels defines the granularity at which access can be regulated, from the
entire asset to individual attributes. ABAC provides the underlying mechanism for making
context-based decisions. These are expressed using the AAS access rule model, which
applies a standardized syntax for defining and evaluating access rules across different
system environments.

2.1 Type AAS & Instance AAS

In practice, Asset Administration Shells can be distinguished into type-level and instance-
level representations. This separation reflects the difference between generic product
information and data specific to an individual asset. Each of these representations follows
the same structural principles but differs in scope, data content, and access requirements.

2.1.1 Type AAS

The Type AAS represents general, reusable information about a product type or class, thus
can be valid for all serial numbers of a product. It contains static data that applies across
multiple instances of the same product, such as technical specifications, standard
materials, or design parameters. Within a company, this may also include internal
submodels or submodel elements that are not intended for external sharing. These private
elements are relevant for internal development, production planning, or variant
management and are typically subject to restricted access control.

2.1.2 Instance AAS

The Instance AAS refers to the specific digital representation of a single, manufactured
asset with a specific single serial number. It references a Type AAS and includes instance-
specific data such as serial numbers, individual configurations, production history, and
operating parameters. It can contain private submodels or submodel elements, for
example, maintenance logs or customer-specific settings, which are only made available to
authorized users.

 August 18th, 2025 11

2.1.3 Public Type and Product Information

A Type AAS can be valid for all serial numbers of a product. An AAS created for a single
serial number is referred to as an Instance AAS. The overlapping area between Type and
Instance contains public product information that is relevant to both representations. This
includes submodels or submodel elements intended for open access, such as digital
nameplates, environmental impact data, or instructions for recycling and disposal. These
shared elements enable transparency and interoperability across systems and
stakeholders. For example, the submodel DigitalNameplate contains both Type and
Instance information.

2.2 Access Levels

The AAS plays a central role in Industry 4.0 by enabling a standardized digital
representation of assets. To ensure secure and controlled application of this concept, a
differentiated access control mechanism is required. This mechanism is structured into
distinct levels: the asset level, the submodel level, and the attribute level (AAS property).

 August 18th, 2025 12

This layered structure supports a precise authorization process and contributes directly to
the protection of AAS-managed data.

2.2.1 Asset Level

At the asset level, access to the entire AAS is regulated. This level defines whether a user
or system can interact with an AAS at all and therefore represents the highest level of
access control. Mechanisms such as authentication and authorization are applied to
enforce this restriction. Only verified users or systems are granted access. Attribute-based
Access control (ABAC), and in simpler cases role-based access control (RBAC), can be used
to assign permissions. For example, a maintenance technician may require access to the
AAS of a machine, while an external service provider may not receive such access.

2.2.2 Submodel Level

The submodel level enables more detailed access control to specific data segments within
an AAS. AAS instances can contain various submodels, each representing a functional or
informational aspect of the asset, such as technical parameters, operational data, or
maintenance records. Access to these submodels can be assigned selectively, depending
on the user role or task. Not every user should be able to view or modify every submodel.
Digital signatures and hashing techniques can be used to ensure integrity. For instance, a
production manager may be authorized to access the "operational parameters" submodel
but not the "maintenance history", which is restricted to technical personnel.

2.2.3 Attribute Level

The attribute level, also referred to as the submodel element level, defines access control
at the most granular resolution. It determines whether individual properties or collections
within a submodel are visible or editable. Applying access rules to submodel element
collections allows partial restriction within a single submodel. This reduces configuration
complexity and helps avoid errors. Depending on the sensitivity of the data, access can be
differentiated into read, write, or restricted modes, especially for external users. For
example, a worker may be allowed to read machine temperature and speed but not the
serial number or license information, which are reserved for administrators.

In addition to access control, encryption can be applied at all levels to protect sensitive
content. Only authorized users can decrypt and use this data. The combination of asset
level, submodel level, and attribute level access structures allows implementation of robust
security mechanisms for the AAS. When supported by access control methods such as
ABAC or RBAC, and complemented with encryption and digital signatures, a consistent and

 August 18th, 2025 13

high level of protection for integrity, availability, and confidentiality in industrial systems
can be achieved.

2.3 Attribute-Based Access Control

Attribute-Based Access Control (ABAC) is an access control method that grants or restricts
permissions based on attributes of the user, resource, action, and context, rather than fixed
roles. Part 4 of the IDTA specification defines an access rule model that is based on the
principle of ABAC. In this model, access requests are evaluated based on attributes
associated with the subject, the object, environmental conditions, and a set of defined
policies. Authorization is granted or denied depending on whether these attributes meet
the specified conditions. This approach allows for flexible and context-aware access
control.

The ABAC model follows the structure outlined in the OASIS XACML specification It
includes the following system components:

• Policy Administration Point (PAP): defines and manages the set of access
control policies.

• Policy Decision Point (PDP): evaluates access requests against applicable
policies and issues authorization decisions.

• Policy Enforcement Point (PEP): enforces authorization decisions by controlling
access to protected resources.

• Policy Information Point (PIP): provides the attribute values required for policy
evaluation.

ABAC also encompasses RBAC, since roles can be treated as one type of attribute. Other
attributes may include time of day, geographic location, or origin of the request. These
attributes can be expressed as claims and used directly within access rules. Access policies
can be applied to API routes defined in IDTA-01002 or to specific AAS elements such as
Identifiables and Referables, either by direct reference or through their semantic
identifiers.

2.4 AAS Access Rule Model

The AAS access rule model uses technology-neutral grammar based on Backus-Naur Form
(BNF) to represent ABAC, where attributes are used in access rules. RBAC can also be
implemented by defining role attributes. Subject attributes and roles may be provided as
claims in access tokens.

https://industrialdigitaltwin.io/aas-specifications/IDTA-01004/v3.1/index.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#CURRENT
https://industrialdigitaltwin.io/aas-specifications/IDTA-01002/v3.2/index.html

 August 18th, 2025 14

The implementation of access control is performed in the resource server, which evaluates
the transferred attributes (claims). This mechanism checks access permission rules that
include constraints related to subject attributes, object attributes, and environment
conditions. After evaluation, a decision is taken and enforced upon the object, for example,
access to a submodel element is either permitted or declined.

If the claims match the data provider’s expectation for a particular policy constraint, the
system returns information for accessing the AAS resources. This typically includes the
URL, a short-living access token, and a refresh token.

 August 18th, 2025 15

3 Authentication

Authentication refers to the process of verifying the identity of a user and forms the initial
step for enforcing controlled access to data via web applications and services. With the
increasing number of web-based applications, authentication procedures are executed
frequently and often in parallel. This leads to operational inefficiencies and security
challenges, particularly when users manage multiple credentials across different
platforms. In many cases, users reuse or slightly modify passwords, which introduces risks.
The use of more secure authentication methods, such as two-factor authentication, further
increases user effort and can reduce efficiency. Additional risks arise when user credentials
are processed or stored across multiple systems, increasing the potential for breaches.

Single sign-on (SSO) addresses these challenges by allowing users to access multiple
applications with a single set of credentials. Once authenticated, users can interact with all
authorized services without repeated login actions. SSO thereby improves usability and
mitigates some of the risks associated with credential reuse and distributed identity
handling.

Depending on the application context, different authentication protocols are used. In
enterprise environments, Security Assertion Markup Language (SAML) is commonly
applied to meet high security and flexibility requirements. For web-based applications,
OpenID Connect (OIDC) is more widely adopted. OIDC extends OAuth 2.0 with an
authentication layer and is suited for web scenarios. In the context of industrial data
exchange along supply chains, secure and reliable user authentication is essential for
protecting data integrity and confidentiality.

OIDC defines a process involving three actors: an Identity Provider (IdP), a User Agent (UA),
and a Client Application (CA). The steps involved are as follows:

1. User initiates login: The user attempts to access a protected resource, such as an
AAS, and selects an external IdP (e.g., Google or Microsoft) for login.

2. Authorization request: The CA redirects the UA to the IdP with parameters including
response type, redirect URL, requested scope, and client ID. The scope defines
which parts of the user's profile are requested.

3. User authentication: The user authenticates using credentials and consents to
share the specified profile information with the CA.

 August 18th, 2025 16

4. IdP authorizes and redirects: Upon successful authentication, the IdP authorizes
the user and redirects the UA back to the CA.

5. Token exchange: The CA uses the received authorization code to request tokens
from the IdP's token endpoint.

6. Token response: The IdP responds with an ID token (JWT) and optionally an access
token. The CA then validates the token structure, IdP signature, and claim values.

This token-based authentication mechanism ensures that the identity of the user is reliably
established before granting access to AAS resources.

In this flow, the authorization request specifies the parameter response_type=code. This
indicates that the client is using the Authorization Code Flow, in which an authorization
code is returned and later exchanged for tokens. By including scope=openid, the request
explicitly follows the OpenID Connect standard, enabling the issuance of both ID tokens
and access tokens.

The ID token is issued as a JSON Web Token (JWT) and contains verified claims about the
user, such as name or e-mail address, as specified during the authorization request. It also
includes information about the issuer and the Client Application. The access token, also
issued as a JWT, is used to access protected resources.

 August 18th, 2025 17

OpenID Connect supports multiple flows for the token exchange. The authorization code
flow, as shown above, is the most widely used due to its security properties and general
suitability for web applications. In contrast, the implicit flow allows direct issuance of
access and ID tokens from the Identity Provider without client authentication. The hybrid
flow supports a combination of both approaches.

3.1 Claims, Scopes & Roles

When securing access, the following relationships and attributes are generally considered:

• Comparisons with other attributes

• Comparison with set values (e.g. a date "released from")

• Comparison with claims from the access tokens (e.g. a specific role)

All three aspects are used by policies and in the newer IDTA Security Specification. The use
of attributes is quite self-explanatory. The use of claims, however, requires closer
examination.

The necessary data for verification is typically provided through the Identity Provider in
the form of the Json Web Token, which usually consists of a header, content, and a
signature. While the header and signature of a JWT are largely standardized, the content
contains some mandatory fields but can also be extended individually. The key terms are
'claims', 'scope', and optionally 'roles':

3.1.1 Claims

Claims are statements that drive authorization decisions in the form of key-value pairs that
describe a specific attribute, property, or right associated with a subject. To be more precise,
a claim is a statement by the issuer of a certificate that the value represents a valid
property assigned to the token holder. For example, an attribute 'name=Mustermann' is a
claim. The definition of roles (e.g. 'role = {Admin}') is also considered a claim.

3.1.2 Scopes

Scopes are groups of claims. OpenID Connect, for instance, defines the scope 'email', which
specifies that the attributes 'email' and 'email_verified' must be included in the issued
token. However, scopes can also be a type of permission. A 'read' scope could mean that

 August 18th, 2025 18

the user has access to all APIs that read data. Therefore, the application logic also directly
affects the scopes, as these must implement the corresponding security rules.

3.1.3 Roles

Roles is an optional term. They can be included as a claim in a JWT.

Examples of properties/claims available in an access token:

• iss (Issuer): Identifies the authorization server that issued the token.

• sub (Subject): Identifies the entity that the token refers to (e.g. a user, a client or
a device).

• aud (Audience): Identifies the resource server for which the token is intended.

• exp (Expiration Time): Specifies the expiration time of the token in seconds since
the Unix epoch (January 1, 1970 00:00:00).

• nbf (Not Before): Specifies the time before which the token is not valid, in seconds
since the Unix epoch.

• iat (Issued At): Specifies the time at which the token was issued, in seconds since
the Unix epoch.

• jti (JWT ID): A unique identifier for the token, typically generated as a unique
string.

An Identity Provider can define different conditions for a scope; the most important ones

are:

• Optional: The user must explicitly select this option when logging in. If the user
does not make an explicit selection, they have no access to the associated data or
functions. The advantage is higher data security, as the user has control over their
access rights.

• Default: These scopes are automatically granted when a user logs in. The user
does not need to explicitly select them. Default scopes are often required for basic
functions, such as "profile" for displaying the user profile. The advantage is a
simpler login process and the immediate availability of basic functions.

 August 18th, 2025 19

• Required: If a scope is defined as required, the inclusion of this scope in the
request is mandatory to access the service at all. If this scope is not included in
the request, no access token (or the required permissions) will be issued.

As an example in the following chapters, we assume the Identity Provider sends a token
with the following payload to consumer:

• name: <the user name>
• email: <the user email>
• role: <the access role of the user>
• department: <the department the user is located>

This diagram shows a claims-based authentication process in which a user is redirected to

an Identity Provider (IdP), receives a token with verified claims (e.g., name, email, role,

department), and presents it to the application. The application validates the token, uses

claims like role and department for access control, and may use others for personalization

or communication, avoiding additional user data queries.

See also examples of access rules in JSON serialization.

https://industrialdigitaltwin.io/aas-specifications/IDTA-01004/v3.0/access-rule-model.html#json-serialization

 August 18th, 2025 20

4 Identity Provider (IdP)

An Identity Provider (IdP) is responsible for issuing authentication information in the form
of an access token, typically structured as a JSON Web Token (JWT). Access tokens are
applied to all AAS HTTP/REST APIs, with specific relevance for both repository and registry
services to enable access to resources such as models and submodels.

There are different variants of centralized and decentralized identity providers possible.
Some options are considered below.

4.1 No Authentication/Authorization

If there is no authentication, the data marked as public by the data provider can still be
retrieved.

4.2 Internal Authentication/Authorization

The identity provider is aligned with the resources of the data provider.

4.3 External and Internal Identity Providers

In this setup, a central external identity provider is responsible for user authentication in
collaboration with the internal IdPs.

The following steps are taken:

https://app.swaggerhub.com/apis/Plattform_i40/AssetAdministrationShellServiceSpecification/V3.1.0_SSP-001

 August 18th, 2025 21

1. The external user obtains a token from the external identity provider.

2. The external user uses the token from the external identity provider to identify himself
to the internal identity provider of the data provider.

3. The internal identity provider of the data provider checks the token from the external
identity provider and issues the internal access token.

4. The external user then uses the internal access token to identify with the data provider.

One disadvantage is that external users require a separate token for each data provider
and must log in to each data provider again. However, the option of continuing to use the
token received from the external identity provider eliminates the need for re-
authentication.

4.4 Gateway

To counteract the flood of possible access tokens, the use of a gateway can be useful. The
external user still requires the token of the external identity provider, which is used to log
in to the gateway of the data provider. The gateway contacts the internal identity provider
and hands over the external token. If the external token could be validated, the internal
identity provider generates an internal token that is used to access the data provider's
resources.

 August 18th, 2025 22

For each further access, the system checks whether an internal token already exists for the
external token. In this case, it is no longer necessary to generate a new token via the
internal identity provider.

The advantage of this approach is that the external user only needs to know the token that
was received during authentication with the external identity provider.

 August 18th, 2025 23

5 Conclusion

This document outlined how access to Asset Administration Shells can be managed
through standardized mechanisms for authentication, identity handling, and access
control. The concept of IDTA-01004 is based on separating access policies from the AAS
content itself and applying them consistently through structured rule evaluation.

When applying security rules, required elements within submodels must remain
accessible. In case such fields are inaccessible, the AAS becomes unusable, and
interoperability is lost, since automated systems cannot validate incomplete submodels.
To avoid this, all required elements within AAS should either be openly accessible or
consistently excluded. Mixed configurations create uncertainty and should be avoided.

Access activities should be logged wherever possible. This includes both successful and
rejected requests. Such data can help evaluate whether the current access configuration is
appropriate and support later adjustments if needed.

Access control in AAS environments must be reliable and predictable. Overcomplicated
configurations reduce transparency and increase the risk of incorrect behaviour. A clear
and well-documented rule set helps maintain system integrity and ensures that AAS
remains usable in industrial applications.

Optional features such as time-based access should only be used with caution. The
increase in complexity for rule evaluation may introduce dependencies that are difficult to
control in distributed or international environments. In most cases, they are probably not
even necessary.

https://industrialdigitaltwin.io/aas-specifications/IDTA-01004/v3.0/index.html

 August 18th, 2025 24

6 Open Challenges

Several unresolved issues remain regarding the practical implementation of access control
in AAS-based environments. One recurring challenge is the use of ABAC policies in
scenarios where necessary attributes for decision-making are not part of the submodel
itself. For example, the “globalAssetId” is often used to determine access rights, but this
attribute is defined at the AAS level. In distributed system setups, where AAS and
submodels are hosted in different systems or components, this separation complicates
access control logic. It requires synchronized availability of contextual information across
components, which increases implementation effort and the need for standardization.

Another challenge is the performance of authorization checks. While evaluating access
rules for single AAS instances or submodels is manageable, processing large lists such as
search results can create significant overhead. Each result may require separate rule
evaluation, especially in setups with complex access structures or high-frequency queries.
Without optimized handling, this can reduce system responsiveness and limit scalability.

 August 18th, 2025 25

7 Outlook

The broader adoption of AAS security depends on how product and service providers
implement and integrate the specified mechanisms into their existing environments. In
many cases, identity and access management is already handled through internal systems
such as LDAP or Active Directory. A practical security solution must be able to interface
with these existing structures. Maintaining separate and isolated access control systems
in parallel is not realistic for most companies.

Therefore, it is essential that providers of AAS-enabled solutions are directly involved in
the design and refinement of security mechanisms. This includes understanding the
technical consequences of implementing policy repositories, supporting token validation,
or integrating federated identity systems. Especially in brownfield scenarios, where
existing infrastructure cannot be replaced easily, the effort for integration must be
considered early on. Otherwise, there is a risk that potential adopters disengage due to the
perceived complexity or lack of compatibility.

To ensure a balanced progression, standardization must be developed in parallel with
implementation experience. A rigid specification that is not validated by real systems will
likely face resistance. Instead, feedback from those building and deploying AAS
infrastructure must remain part of the process.

We, the Open Industry 4.0 Alliance, actively support the implementation of AAS security
concepts in industrial environments. As these mechanisms move from specification to real
systems, practical experience becomes essential. If you are working on similar challenges
or have expertise in secure identity handling, access control, or system integration, we
invite you to contribute. Join the ongoing work, share your perspective, and help ensure
that these solutions remain applicable, efficient, and aligned with operational needs!

	Imprint
	Abstract
	Introduction
	1 Reference Scenarios: Defining the Context for Access Management
	1.1 B2B Use Case
	1.2 B2C Use Case

	2 Access Control Concepts for the AAS
	2.1 Type AAS & Instance AAS
	2.1.1 Type AAS
	2.1.2 Instance AAS
	2.1.3 Public Type and Product Information

	2.2 Access Levels
	2.2.1 Asset Level
	2.2.2 Submodel Level
	2.2.3 Attribute Level

	2.3 Attribute-Based Access Control
	2.4 AAS Access Rule Model

	3 Authentication
	3.1 Claims, Scopes & Roles
	3.1.1 Claims
	3.1.2 Scopes
	3.1.3 Roles

	4 Identity Provider (IdP)
	4.1 No Authentication/Authorization
	4.2 Internal Authentication/Authorization
	4.3 External and Internal Identity Providers
	4.4 Gateway

	5 Conclusion
	6 Open Challenges
	7 Outlook

