

1

Case Study

Vulnerability Management Using
Software Bill of Materials (SBoM)

Imprint

 October 9th, 2024 2

 IMPRINT

Publisher
Open Industry 4.0 Alliance
Christoph Merian-Ring 12, 4153 Reinach, Switzerland
https://openindustry4.com
info@openindustry4.com

Status
File: Vulnerability Management Using Software Bill of Materials (SBoM)
October 9th, 2024 – Version 1.0

Editors
Lucas Wolf (Open Industry 4.0 Alliance)

Authors
Roland Erk (Conplement AG)
Dr. Florian Probst (Software AG)
Daniel Bitzer (ifm electronic)
Vitaliy Volevach (Siemens)

mailto:info@openindustry4.com

Abstract

 October 9th, 2024 3

Abstract

This case study explores the challenges and solutions related to managing software
vulnerabilities in embedded devices and general-purpose software within industrial
environments. It highlights the limitations of traditional methods and emphasizes the
importance of adopting a Software Bill of Materials (SBoM) to enhance security and
streamline the vulnerability management process. By examining both the "old world"
approach, reminiscent of the log4j crisis, and the "new world" approach utilizing SBoMs and
Asset Management Systems (AMS), the study illustrates how modern practices can lead to
more effective, proactive security measures. Readers will gain insights into how
manufacturers, integrators, and users can implement these strategies to improve their
security posture, reduce maintenance costs, and ensure the reliability of their systems.

Motivation

 October 9th, 2024 4

Motivation

Currently, security in embedded devices and general-purpose software is implemented in
a very much ‘ad hoc’ manner, if at all. The fact that this isn't optimal is becoming apparent
as cybercriminals score major hits in regular intervals, with headline news at least once a
month, sometimes many more. This situation costs victims time, money, and customer
confidence for some software vendors. However, since the impact is spread across multiple
vendors, it doesn't create enough pressure to drive significant change. If it did, we'd see
gradual improvements in software security instead of the current trend.

Since this problem isn't being resolved in an unregulated market, the EU and its member
states are pursuing legislation to enhance security for embedded devices and general-
purpose software. The goal is to empower users with the information needed to assess
product security and hold vendors accountable for weak security measures and lack of
timely updates to address vulnerabilities. While industrial devices are not currently subject
to these regulatory requirements, manufacturers would be wise to consider implementing
the same measures. This would future proof their processes in case the exemptions are
removed. More importantly, it can already grant a competitive edge by demonstrating that
their product design prioritizes security.

This case study focuses on a specific aspect of a product's security lifecycle: the Software
Bill of Materials (SBoM). The SBoM is similar to the bill of materials that is well known for
physical products and contains a list of all hardware components that are included in the
product itself. Now, let's make this more tangible by looking at a real-world example.

For instance, the BoM for an e-bike would include the frame, wheels, electric motor, battery
pack, pedals, gears, and so on. The SBoM for the e-bike will likewise contain a list of all

Motivation

 October 9th, 2024 5

software components that are included in the device and is part of the BoM. For example,
it includes the battery management system software, drivers for the acceleration and
speed sensors, Bluetooth or GPS module firmware and any open-source libraries used for
connectivity or sensor data processing. This list can be very small, like for an embedded
sensor that only contains its manufacturers firmware, but devices with more complex
functionality will likely contain hundreds of components, especially if they are based on
the Linux or Windows operating systems. Most of these components are likely to be not
written by the device manufacturer but are either off-the-shelf or open-source
components.

To explain why this SBoM is important, let us look back to the log4j crisis. At that time, a lot
of software that was developed using Java programming language was using an open-
source component, the log4j library, for writing output. This library had a flaw that let an
attacker run any software by altering its inputs. This fault made millions of software
installations and devices vulnerable to attacks. The main problem was, when the error was
discovered, the users of these software or devices did not know that they were vulnerable
and therefore could not protect themselves, because they did not know that log4j was
running inside their software. Manufacturers were also slow to announce that their
products did include log4j before a fix was available for their software. This led to some
installations still being vulnerable months after the fault was widely known.

This incident demonstrated clearly that information about software vulnerabilities is
currently not available to most end users and therefore the users are not able to determine
what to do to protect themselves from attacks. To solve this, regulators are demanding that
software and device manufacturers and integrators provide a SBoM to the user. This has
multiple advantages:

• The users of a device can perform their own security analysis when vulnerabilities
in the device software become known, taking their own scope of use and how this
affects their security posture into consideration. This can be done immediately
when knowledge of the vulnerability is released, as opposed to waiting for a
manufacturer reaction that may be days or sometimes even months late.

• The manufacturers of an industrial device like a sensor or a motor controller
usually do not know the device's end users, so contacting them in case of a
significant vulnerability would require collecting contact information for all users,
details an integrator or reseller of a product not necessarily wants to provide.
Additionally, simply publishing the vulnerability on the manufacturer’s website
will leave a wide gap open for exploitation of the vulnerability and places an
undue burden on the user to manually browse this information and verify
whether the vulnerability applies or not.

Motivation

 October 9th, 2024 6

• The manufacturers of machines typically utilize a multitude of industrial devices
from different vendors. Now they can automatically notify the end-users about
potential security vulnerabilities, based on the information received from the
device manufacturers.

As often seen in the media, creating flawless hardware and software from the outset is an
extremely challenging, if not unattainable goal. Despite this, users naturally expect
software to be secure and reliable. While such expectations are legitimate, they are also
somewhat idealistic, considering that delivering software that is proven to be robust and
fault-resilient is associated with a significant increase in cost. Costs, that consumers are
often reluctant to shoulder. A more pragmatic approach would be to recognize that some
imperfections will occur and to implement strong procedures to address and rectify these
faults efficiently as they come to light. This case study aims to demonstrate how this can
be effectively accomplished by device manufacturers, integrators, and users, with the
discussion being limited to devices utilized within a factory setting.

Manufacturer

 October 9th, 2024 7

Manufacturer

Building and Updating Devices

The device manufacturer will have to generate a SBoM and provide it with each software
update for all parts of the software a device includes.

For this case study, let’s assume the device runs embedded Linux built by the Yocto build
environment, a well-established environment by the Linux Foundation. Now, the device
runs one or many applications in the form of docker containers. Base firmware and
applications can update on their own schedule, so it makes sense for the manufacturer to
provide SBoMs for each component separately.

In particular, the SBoM of the firmware can be generated automatically from the Yocto
build by including the meta-dependencytrack layer into the build configuration. This will
generate a CycloneDX format SBoM that is suitable for processing with a vulnerability
analysis software or service like the open-source dependency trackservice
(https://dependencytrack.org/). For the applications, the container images can be analyzed
using the open source syft tool (https://github.com/anchore/syft/blob/main/README.md),
which also generates CycloneDX format SBoMs.

Obviously, this would be done by the manufacturer in their continuous integration and
continuous delivery (CI/CD) environment, and an updated SBoM would be accompanying
each software release that gets built. For these SBoMs to be effective, they must reach the
device's integrator or end user. While it is possible for the manufacturer to provide the
SBoM on a physical medium or as a web link, this does have drawbacks:

• Manufacturers would need to know who to send the medium or link to. Contacts
will change frequently and keeping contact information current is a burden.

• When the devices are integrated into bigger systems and sold to end-users down
the chain, the contacts of the end-users are typically not known to the device
manufacturer.

These drawbacks can be avoided by publishing the SBoM as part of the Asset
Administration Shell (AAS) for this device. For each device provisioned with a combination
of firmware and applications, the manufacturer would create a Type or Instance AAS for
this device, including the SBoM for each component. A Type AAS describes a family of
products with the same configuration, while an Instance AAS has a one-to-one link to one
physical device. Which of those options or even both together is chosen does not matter, if

Manufacturer

 October 9th, 2024 8

each available software component version has an entry in the AAS. Optimally, this would
also include a link to the respective software update file.

 The manufacturer publishes the AAS for the device on its public AAS repository and
provides a way to find this AAS, for example by attaching a QR code to the device. This is
also a good opportunity to also include additional documentation into the AAS, like user
manuals, data sheets, maintenance instructions or certificates of compliance.

Handling Vulnerabilities

If a vulnerability becomes known in one of the components, the manufacturer provides
themselves (as opposed to open source or third-party software dependencies), it is their
responsibility to publish this information. While the first impulse may be to only reveal the
vulnerability and advise the users directly or simply publish the vulnerability
announcement on the manufacturer’s website, it would be more prudent to release this
information through the already established vulnerability reporting facilities for Common
Vulnerabilities and Exposures (CVEs), so available vulnerability tracking systems can be
used to detect the new vulnerability and alert the users. This eliminates the need for the
manufacturer to maintain lists of former customers for notifications or for customers to
frequently check the manufacturer's website for updates - both of which are manual,
cumbersome, and prone to errors.

If, on the other hand, a vulnerability is revealed in one of the dependencies of the product,
the responsibility of the manufacturer would be to assess the severity and consequences
of the vulnerability and provide either a new firmware or application that fixes the problem
if it is deemed to be exploitable. The new firmware will create a new version entry in the
AAS instance of the device.

If a vulnerability is not exploitable, for example because it is in a container based image
and the affected component is not used in a way that exposes it, the manufacturer can just
update the SBoM and publish a new AAS version with this assessment result to potentially
save the users time to do the analysis on their own and also demonstrate that the
manufacturer reacts to security findings in a timely manner.

Integrator

 October 9th, 2024 9

Integrator

The integrator will receive the Type and/or Instance AAS’ for the devices used in the
production of a machine and will include or reference these AAS’ as components when
delivering the machine with its own Instance AAS (just distributing a Type AAS seems less
useful here).

If the integrator changes or updates the software on the device, they are responsible for
updating the SBoM in the AAS to ensure it accurately reflects the software currently
running on the machine. They also should establish a vulnerability handling process similar
to the manufacturer above.

User

This case study assigns the primary responsibility for determining and enforcing the
factory's security posture to the party most impacted by an attack - the user - who is
therefore most motivated to seek improvements. The user is, in this industrial scenario,
likely the IT department that is tasked with integrating a machine into the factory and
providing an environment suitable for secure production and not the actual operator of the
machine.

The IT department will likely be no stranger keeping a detailed inventory of deployed
machines and software already, if only to facilitate maintenance and inspections. The
following not only demonstrates how the IT department (in the following, just “the user”)
can attain a better security posture, but also automate most of the required tasks and
therefore make net gains in ease and productivity.

Integrating a New Machine

 October 9th, 2024 10

Integrating a New Machine

When a new machine is procured, the user currently is already likely to receive a plethora
of documentation with the machine. If the manufacturer has supplied these in the AAS with
the device, the user gains access by just scanning the provided QR code. To make the most
of this, the user will want to deploy an Asset Management System (AMS) that helps keep
track of all the contents of the AAS. Adding the machine to the inventory then becomes as
simple as scanning the QR code. If the manufacturer did not already provide an Instance
AAS, this would be the time that one would be created by the AMS from the Type AAS
supplied to keep track of further changes of the machine.

 At this time, this AMS also extracts the SBoMs from the AAS and provides the list of
components to a continuously running vulnerability tracking system like the open-source
Dependency Track software, which can also easily be integrated into the AMS. Any already
present vulnerabilities will be indicated to the user and can be evaluated before the
machine is installed and operating, minimizing the window of attack. The user will maintain
ongoing vulnerability tracking, continuously testing the SBoMs against known
vulnerabilities throughout the machine's lifetime. They will also set up alerts for any new
vulnerabilities identified by the system's data sources, which are updated with CVE
releases from manufacturers or other entities that discover vulnerabilities.

In addition, the AMS will continuously monitor the AAS published by the manufacturer and
integrator to detect changes in the SBoM (in case new information was added there) and
merge some of these changes into the AAS stored locally. For example, as suggested
above, if the manufacturer provides the assessment of the consequences of a vulnerability
in a timely manner, the user can trust this information and save the time for the analysis.
This is also an excellent channel for the manufacturer to indicate new software updates to
the user.

Updating a Machine

Since the AMS already has a complete inventory of available updates, adding a scheduling
option for updates is another time saving feature. The AMS can even aid the user in
downloading all required updates for pre-screening and (for air-gapped environments) for
these updates to be stored on a mass storage device to be carried to the machine to start
the update. On a successful update, the AMS will update the local Instance AAS to indicate
the new software version that was installed. If the machine is connectable by the AMS, the
machine can even supply its own Instance AAS as an option, making even this step
automatic.

To Summarize: a World With and Without SBoM

 October 9th, 2024 11

To Summarize: a World With and Without SBoM

The following sections contrast how vulnerabilities were managed in the past with how
they can be addressed today using approaches like the Software Bill of Materials (SBoM).
This comparison highlights the shift towards more proactive and efficient methods of
ensuring security and managing vulnerabilities in modern IT environments.

The Old World

Without the measures suggested above, this would follow along the lines of the log4j
vulnerability. Let’s assume a security researcher discovers it and follows responsible
disclosure. Major Linux distributors would release updates and shortly after that, the
vulnerability will be revealed openly. If the manufacturers are lucky, Yocto will have a fix
at the same time as the Linux distributors, so they have a head start to build new software
and may be able to supply an update before disclosure hits the media.

Assuming the manufacturer now wants to provide this update to all users of the device.
Contacting the users is a time intensive process, and that does not guarantee a substantial
number of users actually install the update in a timely manner given that contact
information may be out of date or simply wrong and that end users may not understand
the danger unless it is told in most dire words. We would very likely see a repeat of the
log4j scenario, in that many installations were not secured against exploits even several
months after it became known.

The New World (SBoM)

Once the affected device is acquired, the new owner's AMS will have gathered all the
software modules on the device and submitted their corresponding SBoMs to the internal
vulnerability tracking system. As the vulnerability becomes known, the owner’s tracking
systems will receive a preliminary CVE from their vulnerability information sources during
the responsible disclosure process. This preliminary CVE should already indicate which
component and version is vulnerable, although it should not contain specific information
about the vulnerability that could lead to exploitation of it. If possible, the manufacturer
can indicate in the CVE when a fix will become available.

From this moment on, the owner is already informed about the new vulnerability, knows
which devices are affected, and can promptly conduct a risk analysis. The vulnerable
devices can be firewalled, isolated or disconnected to prevent exploitation, depending on
the security posture and risk tolerance of the owner. This decision can be made even before
a software update to fix the vulnerability is available. If the release time is known, the

Conclusion

 October 9th, 2024 12

owner can already schedule a maintenance of the device to apply the fix as soon as
possible and afterwards remove the temporary mitigations.

Vulnerability tracking systems are becoming a crucial part of modern IT infrastructure,
assisting administrators in keeping up with the ever-growing number of reported
vulnerabilities and the related software updates. Today, IT administrators have a
company-wide dashboard of vulnerable software and can easily deploy fixes. Tomorrow,
the same approach could apply to fleets of devices. An AMS could offer a vendor-agnostic,
unified dashboard for vulnerable devices on the factory floor, regardless of the
manufacturer, integrator, or location - whether within the company or elsewhere. This
would enable responsible personnel to efficiently schedule and execute updates, reducing
maintenance costs while simultaneously enhancing security.

Conclusion

In conclusion, the shift from traditional, reactive vulnerability management to a proactive
approach using Software Bill of Materials (SBoM) represents a significant advancement in
the security of embedded devices and general-purpose software. By adopting SBoMs and
integrating them into Asset Management Systems (AMS), manufacturers, integrators, and
users can better manage and mitigate security risks. This not only enhances the ability to
respond swiftly to vulnerabilities but also improves overall security posture, reducing
maintenance costs and increasing reliability. As the industry continues to evolve,
embracing these modern practices will be crucial in safeguarding against the growing
threats in today's digital landscape.

For this methodology to be effectively adopted, it is essential that different companies
collaborate with each other. Consensus regarding the use of standards and common
interfaces and trust in exchanging data must be reached. Consequently, organizations and
alliances that foster the exchange between different players in the industrial field are
crucial in increasing the adoption of technologies for vulnerability management, as
discussed in this paper.

	Imprint
	Abstract
	Motivation
	Manufacturer
	Building and Updating Devices
	Handling Vulnerabilities

	Integrator
	User
	Integrating a New Machine
	Updating a Machine
	To Summarize: a World With and Without SBoM
	The Old World
	The New World (SBoM)

	Conclusion

